时间:2025-05-23 01:21
地点:定远县
EBpay安卓版本
当然可以!下面是一道概率论的题目: 某餐厅的顾客点餐时,有70%的人点了主食,50%的人点了汤,30%的人点了甜点。现已知有顾客点了主食和汤,求有顾客点了汤的情况下,同时点了主食和甜点的概率。 解答:设A为点了主食的事件,B为点了汤的事件,C为点了甜点的事件。 根据题意,P(A) = 0.7,P(B) = 0.5,P(C) = 0.3。 已知P(A ∩ B) = 0.5,要求P(A ∩ C | B)。 根据条件概率的定义:P(A ∩ C | B) = P(A ∩ C ∩ B) / P(B)。 由于我们只知道有顾客点了主食和汤,但不知道有顾客同时点了主食、汤和甜点,所以假设点了主食和汤的顾客群体中同时点了主食、汤和甜点的比例为x。 根据概率的加法公式,P(A ∩ B ∩ C) = P(A ∩ B) + P(A ∩ B' ∩ C) = P(A ∩ B) + P(A ∩ B') * x, 其中B'表示没点汤的事件。 又因为A和B是独立事件,所以P(A ∩ B) = P(A) * P(B) = 0.7 * 0.5 = 0.35。 又因为C是在没有汤的情况下点甜点的概率,所以P(A ∩ B') = P(A ∩ B' ∩ C) + P(A ∩ B' ∩ C') = P(A ∩ B') * x + P(A ∩ B') * (1 - x), 其中C'表示没点甜点的事件。 另外,由全概率公式,P(A ∩ B') = P(A ∩ B' ∩ C) + P(A ∩ B' ∩ C') = P(A ∩ B ∩ C') + P(A ∩ B' ∩ C') = P(B') * (P(A ∩ C') + P(A ∩ C)) = (1 - P(B)) * (1 - P(C)) + P(A) * P(C) = (1 - 0.5) * (1 - 0.3) + 0.7 * 0.3 = 0.55。 代入以上这些已知的概率,可以得到: P(A ∩ B ∩ C) = 0.35 + 0.55 * x。 所以P(A ∩ C | B) = (0.35 + 0.55 * x) / P(B) = (0.35 + 0.55 * x) / 0.5 = 0.7 + 1.1 * x。 因此,在有顾客点了汤的情况下,同时点了主食和甜点的概率为0.7 + 1.1 * x。
时光流转,左小青的故事仍在继续。
现在,市场把活禽销售区和宰杀区分离,环境好了,买起菜来也更舒适了。
忙些什么,你那边下雨吗?
前面张译和小女孩的相处温馨搞笑,在观影体验上不错,但到了后面导演实在过于喜欢苦情戏了,各种强行煽情让观众哭,现在大部分的观众走进电影院就是为了娱乐,这种过于煽情的作品自然口碑两极化。
烹饪方法多不说,其营养价值也非常丰富。
具体的流氓兔获取方法可以来看下这期的攻略内容。
我男朋友跟我分手了对我讲别把我们的情绪搞得太乱了好?什么意思?
这句话的意思是你的男朋友告诉你不要让自己的情绪变得太混乱,也就是要保持冷静。他可能希望你在面对分手时能够理性处理自己的情绪,不要让情绪过于失控。